

Into Thin Air(ways): A scoping review of the effects of high altitude on anaesthetic administration in pre-hospital environments

RCT evidence²⁹; high

Olivia Hobrough olivia.hobrough1@nhs.net, Owen W Tomlinson University of Exeter Medical School, Faculty of Health & Life Sciences, Exeter EX1 2LU

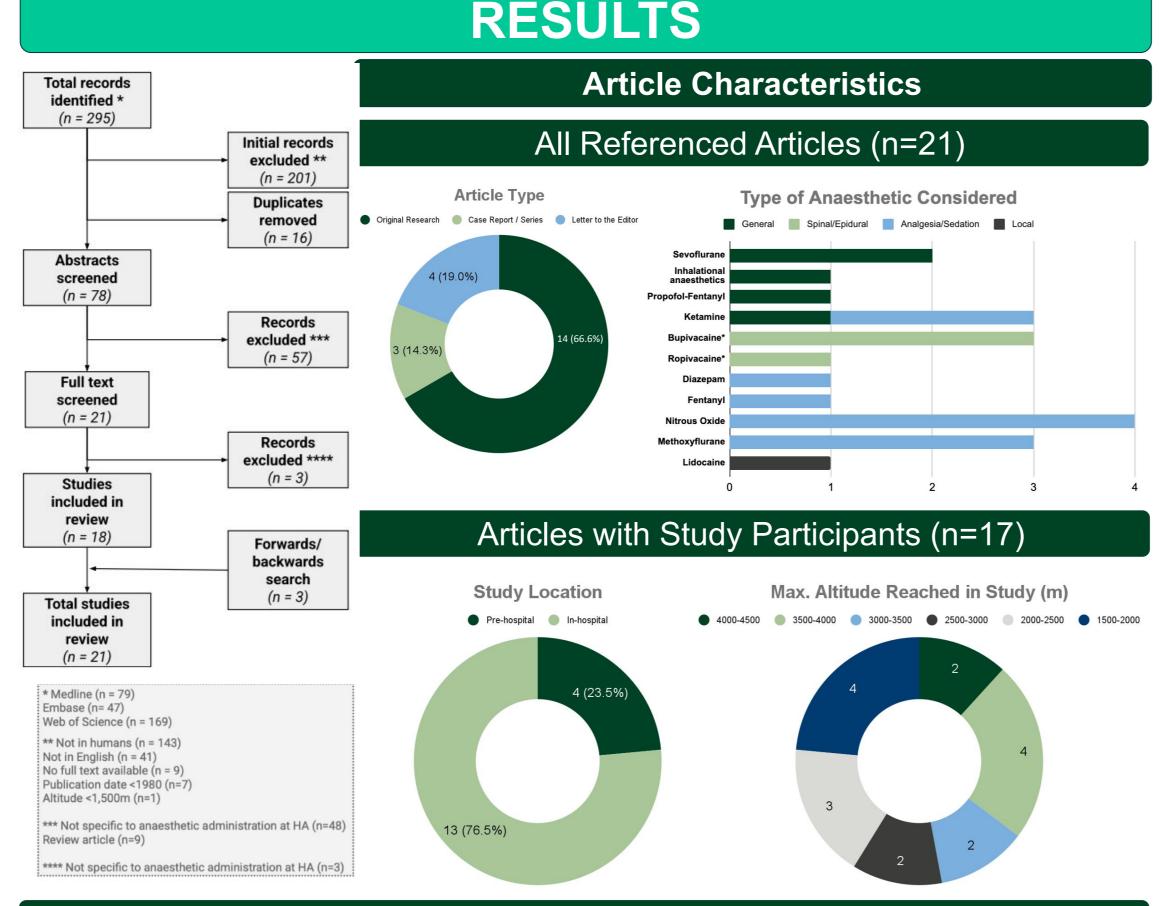
BACKGROUND

- Accessibility and demand for adventure travel has dramatically increased the number of people travelling to high altitude (HA)¹.
- HA poses a unique challenge to anaesthesia due to hypobaric hypoxia affecting human physiology, pharmacodynamics and equipment performance, complicating pre-hospital delivery.
- No clinical guidelines exist for anaesthetic administration at HA; a critical evidence gap.

RESEARCH OBJECTIVES

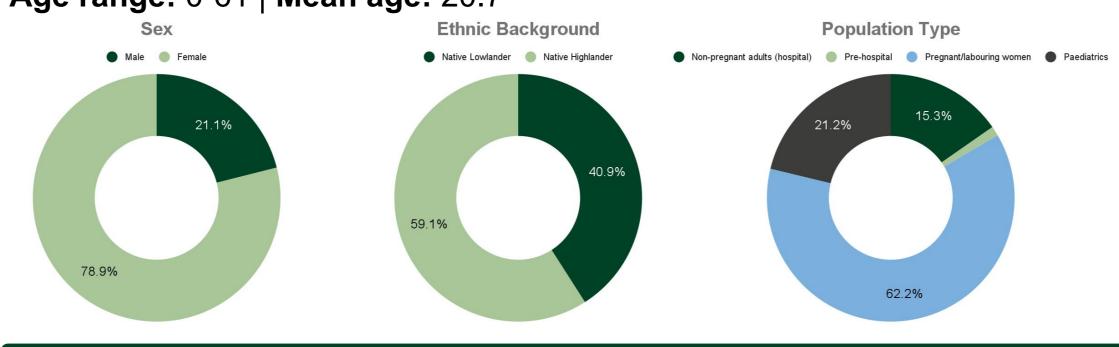
- 1. Determine how anaesthetics are used at HA.
- 2. Evaluate the impact of HA on anaesthetic use and, where possible, offer cautious clinical insights.
- 3. Identify research gaps to inform future studies.

RESEARCH METHODS


Protocol: Designed and reported using the Arksey & O'Malley² and PRISMA-ScR frameworks³.

Eligibility: Identified using the "population, concept, context" (PCC) framework recommended by the Joanna Briggs Institute (JBI)⁴ and endorsed by the PRISMA-ScR framework.

Population	Human participants.
Concept	Administration of any anaesthetic agent, sub-categorised as general, regional, sedation/analgesia and local.
Context	English-language articles published after 1980, examining environments >1,500m (real or simulated).


Data sources: Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica dataBASE (EMBASE) and Web of Science were searched from Oct 2024-May 2025.

Data synthesis: Key data characteristics are visually represented. Narrative synthesis of conclusions, by subcategory, is provided. There is no meta-analysis as data collected were very heterogeneous. The Grading of Recommendations, Assessment, Development and Evaluation (**GRADE**)⁵ tool is used to offer a systematic and transparent approach to rating the strength of conclusions (quality; strength).

Participant Characteristics

Total study subjects: 3,162 from 17 articles (excludes letters) **Age range:** 0-61 | **Mean age:** 20.7

General Anaesthetics (GA)

- Pre-hospital GA should be avoided, especially at HA (low; strong)⁶⁻⁸.
- If unavoidable, GA should adhere to in-hospital anaesthetic standards as per the Anaesthetic Association of Great Britain and Ireland (AAGBI)⁶.

		,
Conclusions	GRADE	Comments
 Inhalational anaesthetics are unreliable at HA. Propofol, titrated to BIS, may be safe at HA. Ketamine may be a safe at HA; simple ventilatory 	Low, Strong Low, Conditional Low, Conditional	Consistent observation ⁹⁻¹¹ ; high potential harm. Supported by small, controlled study ¹² ; plausible. Consistent across multiple small studies ¹³⁻¹⁵ ; plausible.
equipment/skills mandated.		

Regional Anaesthetics

•Neuraxial is the preferred method of *in-hospital* anaesthesia at HA due to its minimal effect on ventilation and decreased aspiration risk¹⁶, **but** is unlikely to be practical in *pre-hospital* environments¹⁷.

Conclusions	GRADE	Comments
•Onset of neuraxial anaesthesia at HA is slower and higher doses required.	Low, Strong	Consistent across small studies ¹⁸⁻¹⁹ ; plausible.
- Bupivacaine is the recommended agent	Low, Conditional	Single comparative study ²⁰ , further studies needed.

• No data exist for other regional techniques; research into field-expedient regional blocks (FERBs) would be extremely valuable.

Sedation / Analgesia Conclusions GRADE Comments Consistent observation²¹⁻²³; Low-moderate, Methoxyflurane is safe and effective at HA. Strong plausible. •**Ketamine** is safe at HA; Low, Consistent across studies¹³⁻¹⁵ careful titration required. Conditional Low, Strong Nitrous oxide is inconsistent at HA and should be avoided. Consistent across Very low, Strong studies²⁴⁻²⁷ Opioids are theoretically unsafe at HA. Benzodiazepines are Low-moderate, Single observational study²⁸; theoretically unsafe at HA. Strong high potential harm.

Local Anaesthesia

No robust data exist.

CONCLUSIONS

- Limited research exists on the effects of high altitude on pre-hospital anaesthetic administration.
- Heterogeneity among included articles limits direct comparisons and synthesis.
- Robust observational cohorts or pragmatic RCTs with standardised data, multicentre collaboration, and altitude-specific methods are needed across all areas.
- Specific focus on FERBs would be valuable.
- A clinical guideline informed by the above studies, alongside expert consultation and consensus should be developed to standardise care and improve safety in pre-hospital, HA anaesthetic delivery.
- Until then, clinicians must adapt practise based on physiological principles and prioritise safety.

